A novel framework for the local extraction of extra-axial cerebrospinal fluid from brain MRI

Mahmoud Mostapha, Mark Shen, SunHyung Kim, Meghan Swanson, D LouisCollins, Vladimir Fonov, Guido Gerig, Joseph Piven, Martin A. Styner, and IBIS Network
What is CSF?

- CSF = Cerebro-spinal fluid
- Protection, Ischemia prevention
- Plumbing system of brain
- 0.5L generated per day
- Pulsatile flow
- MRI:
 - Dark in T1w
 - Bright in T2w

What is Extra-Axial CSF?

• CSF between outer cortical surface and dura mater
 – Subarachnoid space
 – Does not include ventricles, foramen, choroid plexus

• Radiology observation (anecdotal):
 – Can be increased early in postnatal phase
 – Can be increased in aging, Alzheimer’s

Why are we interested in EA-CSF?

- EA-CSF findings in Autism by Shen et al

BRAIN
A JOURNAL OF NEUROLOGY

Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder

Mark D. Shen,¹ Christine W. Nordahl,¹ Gregory S. Young,¹ Sandra L. Wootton-Gorges,² Aaron Lee,¹ Sarah E. Liston,¹ Kayla R. Harrington,¹ Sally Ozonoff¹ and David G. Amaral¹

- However, small UCD sample (2013): N=55 (HR-ASD=10, HR-Neg =45)
- Confirmation separate IBIS sample (2017): N = 221 (47 HR-ASD, 174 HR-Neg)
Extra-Axial CSF 6-24 Mo

Low-Risk Infant with Normal MRI; **ASD-negative**

<table>
<thead>
<tr>
<th>6M</th>
<th>12M</th>
<th>24M</th>
</tr>
</thead>
</table>

High-Risk Infant with Increased Extra-Axial CSF; **Diagnosed with ASD**

<table>
<thead>
<tr>
<th>6M</th>
<th>12M</th>
<th>24M</th>
</tr>
</thead>
</table>
Increased EA-CSF Pronounced in Greatest Severity

Adjusted for covariates: Age, Sex, Site, Total Cerebral Tissue Volume

*p<0.05 vs. all other groups. Mixed effects model w/ repeated measures
Prediction of ASD?

• Can we predict which kids will develop ASD before behavioral diagnosis possible?
 – In high risk population

• Potential for early interventions
 – Improve long-term outcome
 – Reduce ASD severity

• Single volume measured at 6 month

• Balance boosted trees ensemble

• IBIS data: **Accu: 69%**, Sens: 0.66, Spec: 0.68

• UCD data: **Accu: 72%**, Sens: 0.80, Spec: 0.67
Local EA-CSF Measure

• Local patterns to EA-CSF enlargement in ASD?
 – 2 open problems

• **1. No method to compute local EA-CSF**
 – Aim to quantify EA-CSF from GM to outer CSF
 – Our approach: Use cortical and outer surface

• **2. No knowledge of EA-CSF trajectory in typical brain development**
Local EA-CSF Scheme

- Tissue segmentation
 - CSF posterior probability map
 - Cortical surface reconstruction
Local Extra-Axial CSF

- How much EA-CSF is between GM and dura?
- Laplacian PDE for correspondence GM to dura
- Fourth-order Runge-Kutta (RK4) streamlines
Local Extra-Axial CSF

- Integration of CSF probabilities along the streamlines
 - Uniform steps along streamlines
- No a true volume measure
Prelim: Developmental Trajectory of EA-CSF

- IBIS data – only low-risk, typically developing
 – 51 kids, scanned at 6, 12 and 24 months
- Consistent pattern of EA-CSF (r > 0.98)
- Overall decrease from 6-12, particularly in frontal regions
Change in EA-CSF

- Actually large changes, overall pattern preserved
- More changes from 6 to 12 month than in the next 12
- Largest relative changes in frontal lobes
- Increased EA-CSF in posterior lobes and in deep sulci
Regional Analysis (new)

• AAL, 78 cortical regions (out of 90)
 – Monthly EA-CSF monthly change
• 6=>12: 54 regions significant decreases
• 12=>24: 33 regions significant decreases
• 30 regions common in both analyses
 – L & R inferior occipital gyrus
 – L & R fusiform gyrus
 – L & R middle occipital gyrus.
• Next: Potential biomarker of Autism prediction
• Next: longitudinal modeling
• Next: Baby Connectome for actual trajectories
Take Home

• Extra-axial CSF is an important measure of brain development
• Novel automatic method for local, cortical surface based quantification of EA-CSF
• EA-CSF important in Autism & potentially other neurodevelopmental diseases
 • Possible predictive biomarker for Autism
Acknowledgment

• No conflicts of interest
• Work by the IBIS team
• R01HD055741, U54HD079124, R01EB021391, K12-HD001441.

Current IBIS Network

University of North Carolina
Joe Piven
Heather Cody Hazlett
Martin Styner
Hongbin Gu
Meghan Swanson
Rachel Smith
Mike Graves
Chad Chappell
SunHyung Kim
Mark Shen
Mahmoud Mostapha

University of Minnesota
Jed Elison
Jason Wolff
Brittany Howell

CHOP
Robert Schultz
Sarah Paterson (Temple)
Juhi Pandey

University of Alberta
Lonnie Zwaigenbaum

New York University
Guido Gerig

McGill University, Montréal
Alan Evans
Louis Collins
Vladimir Fonov
Reza Adalat
John Lewis
Samir Das
Leigh MacIntyre

College of Charleston
Brent Munsell

Infant Brain Imaging Study

NIRAL Autism Center of Excellence